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Abstract. The computation of the radiation flux related to the Hawking temperature of a Schwarzschild
black hole or another geometric background is still well-known to be fraught with a number of delicate
problems. In spherical reduction, as shown by one of the present authors (Kummer) with Vassilevich, the
correct black body radiation follows when two “basic components” (conformal anomaly and a “dilaton”
anomaly) are used as input in the integrated energy-momentum conservation equation. The main new
element in the present work is the use of a quite different method, the covariant perturbation theory
of Barvinsky and Vilkovisky, to establish directly the full effective action which determines these basic
components. In the derivation of Kummer and Vassilevich the computation of the dilaton anomaly implied
one potentially doubtful intermediate step which can be avoided here. Moreover, the present approach
also is sensitive to IR (renormalization) effects. We realize that the effective action naturally leads to
expectation values in the Boulware vacuum which, making use of the conservation equation, suffice for
the computation of the Hawking flux in other quantum states, in particular for the relevant Unruh state.
Thus, a rather comprehensive discussion of the effects of (UV and IR) renormalization upon radiation flux
and energy density is possible.

PACS. 04.60.-m, 04.60.Kz, 04.70.Dy

1 Introduction
Almost three decades after the (theoretical) discovery of
quantum radiation from the event horizon of a geometrical
background, in particular from a black hole (BH) [1, 2],
somewhat surprisingly, still the existence of open prob-
lems is an acknowledged phenomenon – even when only
large BHs are considered which, to a good approximation,
represent a time-independent curved background.

Actually, the computation of the Hawking effect does
not require an analysis of the complete evolution of the
(massless) fields between infinitely early and infinitely late
times. It is sufficient to exploit the energy-momentum (EM)
tensor near the future horizon only. The relation between
Hawking temperature and the radiation flux at infinity is
still the object of some debate. The activity in this field
has been rekindled by the work of Bousso and Hawking [3]
who, on the basis of a computation in 2D dilaton gravity
resulting from spherically reducing Einstein gravity [4],
claimed that an incoming asymptotic flux and thus “anti-
evaporation” occurs. Actually already some time before [3]
it had been argued [5] that the so-called conformal anomaly
〈T 〉2, the trace of the EM tensor in two dimensions1, which

a e-mail: hofmann@hep.itp.tuwien.ac.at
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1 A lower index 2, 4 attached to an expectation value means

computation in spherically reduced gravity or directly in four
dimensions, respectively.

had been the only input considered2 in [3], cannot provide
the complete answer.

The problem has been focused on in [9–11], where the
relation between the missing second piece, the 2D “dilaton
anomaly”

〈
T θ

θ

〉
2, to the pressure component

〈
T θ

θ

〉
4 of

the EM tensor in the original 4D theory (in coordinates
time, radius and angles θ, ϕ) has been established. In the
following these two essential ingredients of the flux calcu-
lation, 〈T 〉2 and

〈
T θ

θ

〉
2 (cf. (9) and (10) below), will be

called “basic components” of the EM tensor.
It had been known for a long time [12] that 2Dminimally

coupled massless scalars – i.e. in the absence of a dilaton
field – provide the correct flux from the 2D conformal
anomaly 〈T 〉2 alone. But an actual computation of the
missing piece

〈
T θ

θ

〉
2 was not available until thework of [13].

The determination of 〈T 〉2 precisely fits into the elegant
formalism of heat kernel regularization [14,15], because in
2D “by chance” 〈T 〉2 is simply the trace anomaly of a
massless scalar field which is related to the variation of the
effective action for a multiplicative (conformal!) factor of
the Laplace operator. By contrast, the quantum correction〈
T θ

θ

〉
2 cannot be computed as easily in this formalism, be-

2 The correct expression for the conformal anomaly in the
presence of a 2D dilaton field for spherically reduced gravity [5]
and for general 2D dilaton theories [6,7] taken alone yields the
same unphysical flux. For a comprehensive review of general
2D dilaton models we refer to [8].
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cause it lacks that key property. For this reason in [13,16]
the Laplace operator, including a general coupling to the
dilaton field, has been split into a product of two Dirac
operators whose combined determinant need be evaluated
in flat space only. Then a (multiplicative!) variation with
respect to the dilaton field is observed and allows for the
computation of the component

〈
T θ

θ

〉
2, dubbed “dilaton

anomaly” in that work. Using both basic components in
a (“dilaton-deformed”) EM conservation equation [9, 11]
produced exactly the black body Hawking flux at infin-
ity from 2D minimally coupled scalars which would follow
from the Hawking temperature computed from, say, the
surface gravity at the horizon. The outgoing flux at infin-
ity precisely coincided with the Stefan–Boltzmann law for
d = 2, which is related easily to the equally correct 4D re-
sult. The only further input had been the vanishing of the
asymptotic incoming flux together with the condition of
finiteness (or at least integrability) of the flux at the horizon
(Unruh vacuum) in global Kruskal–Szekeres coordinates.
In addition, by direct functional integration an expression
for the total effective action in the presence of a general
dilaton coupling was obtained. Despite these satisfactory
final results, the step splitting the Laplace operator into
two linear Dirac operators from a rigorous mathematical
point of view seemed to be a doubtful one.

Therefore, in our present paper we attempt to close
that loop hole in an alternative derivation by a new ap-
plication of the covariant perturbation theory, introduced
by Barvinsky and Vilkovisky (BV) [17,18]. This technique
allows one to proceed directly to the effective action. In [19]
it already has been shown that the BV effective action re-
produces the correct trace anomaly of conformally coupled
scalar fields in d = 4. Actually, it contains more informa-
tion than just the trace anomaly, although the latter in
general is the only expectation value that can be calcu-
lated directly. In particular, the dilaton effective action
derived in the present work not only produces the correct
2D trace anomaly but also represents another derivation of
the dilaton anomaly. However, beside the expression found
in [13, 16] we encounter an important IR renormalization
effect, i.e. something which had been by-passed altogether
in the only UV-sensitive previous approach.

That action is used by us only to determine the basic
components 〈T 〉2 and

〈
T θ

θ

〉
2, while the remaining com-

ponents are reconstructed by integration of the EM con-
servation equation, following the procedure introduced by
Christensen and Fulling (CF) [12].

In Sect. 2 we present the dilaton model and some char-
acteristic features of spherically reduced (SR) gravity.

Section 3.1 is devoted to the computation of the effective
action of the dilaton model by the covariant perturbation
theory of [17,18].

In Sect. 3.2 we discuss the ambiguity of the non-local
effective action by a Green function perturbation theory
and fix it by appropriate boundary conditions and some
infrared regularization.

The expectation values of the basic components to be
derived from the effective action are the subject of Sect. 4
and the remaining components in theUnruh state are deter-
mined by fixing the constants Q and K of [12] accordingly.

In the conclusions (Sect. 5) we summarize and discuss
the obtained results.

This paper further contains four appendices: in Ap-
pendix A we shortly present the SR procedure and derive
some useful formulas. Appendix B contains the second and
third order of the Green function perturbation theory. In
Appendix C we show the (non-) conservation of the 2D
dilaton EM tensor at the quantum level. In Appendix D
the regularization of the heat kernel is demonstrated.

Important basic calculations and concepts of this paper
can be found in more detail in the PhD thesis [20] of one
of the authors (D.H.), however a more careful discussion
of (UV and IR) renormalization issues is presented here.

2 Dilaton model

A massless scalar field S is considered on a four-dimensional
Schwarzschild spacetime M with coordinates xµ = (xα, θ,
ϕ), in 4D coupled minimally (but not conformally!) to grav-
ity:

L =
∫

M

[
c2

16πG
R(4) +

(∇S)2

2

]√
−g(4)d4x. (1)

In the following we set c = G = � = kB = 1. This model
can be spherically reduced to a dilaton model on a two-
dimensional spacetime L by integrating out the isometry
coordinates θ, ϕ, (cf. (A.9)):

Ldil =
∫

L

{
XR +

(∇X)2

2X
− 2 + X

[
(∇S)2

2

]}√−gd2x.

(2)
On a four-dimensional spherically symmetric spacetime the
EM tensor exhibits only four independent components [12]
(T 2

2 = T θ
θ = Tϕ

ϕ) in a vierbein basis

Tm
n =




T 0
0 T 0

1 0 0
−T 0

1 T 1
1 0 0

0 0 T 2
2 0

0 0 0 T 2
2


 , (3)

where the first block (up to a factor 4πX) equals the two-
dimensional EM tensor Tα

β on L. Diffeomorphism invari-
ance in the dilaton model (2) on-shell for S implies the 2D
“non-conservation equation”

∇αTα
β = −∇βX√−g

δLdil

δX
, (4)

whose solution for the Schwarzschild metric gtt =
−(grr)−1 =

(
1 − 2M

r

)
,

T r
t = − K

M2 , (5)

T r
r =

1(
1 − 2M

r

) {
Q − K

M2 (6)

+
∫ r

2M

[
M · T

(r′)2
−

(
1 − 2M

r′

)
∂rX√−g

δLm
dil

δX

]
dr′

}
,
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only depends on the integration constants Q, K and the
unknown functions T,

δLm
dil

δX to be identified with the basic
components. Equation (4) is just another expression for
the 4D conservation equation [12] if one identifies

T θ
θ = − 1

4π
√−g

δLdil

δX
. (7)

This relation can be checked easily for the action (2) us-
ing the definition of the EM tensor Tµν = 2√−g

δL
δgµν . In

Appendix C we show that in a fixed classical background
the non-conservation equation also holds at the level of
(renormalized) expectation values,

∇β 〈Tαβ〉ren =
∇αX

2
〈
m2S2 − (∇S)2

〉
= − ∇αX√−g

δW

δX
,

(8)
where W is the generating functional of connected Green
functions for the dilaton theory which at the one-loop level
coincides with the effective action (when the propagators
of the external lines are amputated). At the quantum level
the basic components are calculated by variation of the
effective action3:

〈T 〉2 := 〈T 〉 = gαβ 2√−g

δW

δgαβ
, (9)

〈
T θ

θ

〉
2 :=

〈
T θ

θ

〉
= − 1√−g

δW

δX
. (10)

In the following all quantities are two-dimensional if no
dimension index is attached. T r

t is the flux component
of the EM tensor and differs from the 4D flux (like all
components of the EM tensor) by a factor (4πX)−1 (the
dilaton X is hidden in the spacetime measure

√−g4 =
X

√−g2). The constants Q, K remain to be fixed by the
boundary conditions of the fields and are thus related to
the quantum state of the system [12].

All physical states are characterized by the choice Q = 0
which is a necessary condition for the finiteness of the EM
tensor at the horizon in global coordinates. The Hartle–
Hawking state |H〉 is given by vanishing total flux KH = 0
(thermal equilibrium), whereas the Unruh state |U〉 is de-
termined by vanishing incoming flux (leading to a non-zero
KU). The (unphysical) Boulware state |B〉 is defined by van-
ishing fields in the asymptotic region. This is accomplished
by setting KB = 0 and fixing QB �= 0 appropriately. Al-
though not to be interpreted as a physical state, because
of its natural boundary conditions, in a certain sense it
nonetheless is the natural state of the effective action. On
the one hand, in order to represent a well-defined integral
over the fields, natural (vanishing) asymptotic values for
them are necessary. On the other hand, in the path in-
tegral (cf. (26) below) the field S′ is a sum of a classical
solution S0 and a quantum correction Sq. The standard
procedure is to set S0 = 0 – otherwise one would have

3 It should be emphasized that W is a two-dimensional action
and expectation values derived from it could differ from those
calculated in 4D.

surface terms that would make the application of the heat
kernel method very difficult. This means that the incom-
ing and outgoing states correspond to the vacuum, i.e. the
Boulware state. If the expectation value of the EM tensor
is calculated from the effective action with the Boulware
state values of KB = 0 and QB, any other quantum state
with K = KB + K̃, Q = QB + Q̃ can be reconstructed by
simply adding (to the first block in (3)) a term

〈
T̃µ

ν

〉
=

1
M2




K̃ − Q̃(
1 − 2M

r

) K̃(
1 − 2M

r

)2

−K̃
Q̃ − K̃(
1 − 2M

r

)


 , (11)

which is a special solution of the (non-) conservation equa-
tion. Of course, this procedure works only if the basic
components are insensitive with respect to the state of the
effective action, which is true as long as the radiation does
not affect the spacetime geometry significantly, i.e. in the
quasi-static phase of a BH [20].

3 Non-local effective action

3.1 Covariant perturbation theory

The relation [14,15] between the Euclidean effective action
and the heat kernel e−Oτ for the differential operator O is
given by4

WE [g] = − 1
2

dζ[s]
ds

∣∣∣∣
s=0

= − 1
2

d
ds

1
Γ (s)

∫ ∞

0

dτ

τ1−s
tr e−Oτ

∣∣∣∣
s=0

. (12)

The trace of the heat kernel may be expressed in a coor-
dinate basis

tr e−Oτ =
∫

M

〈x| e−Oτ |x〉√
gd4x

=
∫

M

GO(x, x; τ)
√

gd4x. (13)

In the most common applications the heat kernel is ex-
panded around τ = 0 [14,15]. In contrast to that, the aim
of the method developed in [17–19] is to use (12) directly
in order to find an expression of the heat kernel which is
valid for all values of τ . This allows for performing the
τ -integration and computing the effective action for any
Euclidean Laplacian

O = −� − E, (14)

where � = gµν∇µ∇ν is the contraction of two general
covariant derivatives (which may include a gauge part) by
some Euclidean metric g, and E is an endomorphism, i.e.

4 We denote Euclidean objects by an index E .
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some linear bounded map from the space of fields into itself.
The covariant perturbation series is based on a separation
of the spacetime metric into a flat part g̃ and a perturbing
part h: gµν = g̃µν + hµν (we use the notation of BV).
Nevertheless, each order can be represented by covariant
expressions corresponding to the full metric g, such as
the scalar curvature R, because the flat metric does not
produce gravitational effects, R(g̃) = 0. Then one expands
the Laplacian and the heat kernel in orders of h:

O = −�0 + hµν∇̃µ∇̃ν + . . . , (15)

GO(τ) = e−Oτ =
∞∑

n=0

Gn
O(τ), (16)

where G0
O(τ) = eτ�0 and �0 is the flat Laplacian. Up

to the second order in the curvature the trace of the heat
kernel in even dimensions d = 2ω, ω ∈ N is found to be5 [18]

tr e−Oτ =
1

(4πτ)ω

∫
M

tr
{

1 + τ

(
R

6
+ E

)

+τ2
[
R

(
1

16(−τ�)
+

f(−τ�)
32

+
f(−τ�) − 1

8(−τ�)

+
3[f(−τ�) − 1]

8(τ�)2

)
R

+E

(
f(−τ�)

6
+

f(−τ�) − 1
2(−τ�)

)
R + R

f(−τ�)
12

E

+E
f(−τ�)

2
E

]}√
gd2ωx, (17)

where

f(x) =
∫ 1

0
e−a(1−a)xda. (18)

In the present paper we restrict ourselves to the second
order of covariant perturbation theory, i.e. terms up to
R2, ER, E2. This is at least sufficient to compute the exact
trace anomaly which is completely determined by a single
term of the local Seeley–DeWitt expansion [15, 19] corre-
sponding to that order. With respect to other expectation
values like the dilaton anomaly the necessity for higher
orders cannot be excluded, a priori, though.

For d = 2 the trace of the heat kernel (17) (to this order)
in (12) produces five types of integrals. They contain IR
or (and) UV divergences that have to be regularized by
restricting the range of the τ -integration as

∫ T

ε
dτ in the

limit T → ∞, ε → 0+. These rather tedious calculations
are described in detail in Appendix D. They can be done
analytically to leading order in T, ε for these IR, resp. UV
regularization parameters, and for the corresponding next
finite terms. The formal contribution of these terms to the
effective action (12) is given by

d
ds

{
1

Γ (s)

∫ ∞

0
τ s−1dτ

} ∣∣∣∣
s=0

= ln
T

ε
IR, UV, (19)

5 In the following we set ω = 1, i.e. d = 2.

d
ds

{
1

Γ (s)

∫ ∞

0
τ s−2dτ

} ∣∣∣∣
s=0

=
1
ε

UV, (20)

d
ds

{
1

Γ (s)

∫ ∞

0
τ sf(−τ�)dτ

} ∣∣∣∣
s=0

=
2 · [ln(−T�) + γE]

−� IR, (21)

d
ds

{
1

Γ (s)

∫ ∞

0
τ s−1 f(−τ�) − 1

−� dτ

} ∣∣∣∣
s=0

=
2 − ln(−T�) − γE

−� IR, (22)

d
ds

{
1

Γ (s)

∫ ∞

0
τ s−2 f(−τ�) − 1

�2 dτ

} ∣∣∣∣
s=0

=
ln(−ε�) + γE − 8

3

6(−�)
UV, (23)

where γE ≈ 0, 57721 is the Euler constant. Collecting all
terms in the heat kernel (17) it turns out that the con-
tributions from the divergent parts ε−1, ln ε, and lnT sur-
prisingly cancel to zero in those non-local terms containing
the scalar curvature R. The contribution of the R2-term in
(17), for instance, contains a linear combination of (19)–
(23) which may be written as (19)/(−16�) + (21)/32 +
(22)/8+(23)3/8 = 1/(−12�). Thus, the most general two-
dimensional regularized effective action to second order of
perturbation theory in R, respectively E reads

W reg
E [g] =

1
96π

∫
L

[
12c0 − c1(2R + 12E) (24)

+ (R + 12E)
1
� R + 12E

c2

� E

]√
gd2x.

Here we have introduced the following regularization terms:
c0 = ε−1, c1 = ln(ε/T ), c2 = ln(−T�) + γE. Actually the
term ∝ c1R can be dropped, being a total divergence.
Note that c2 beside a logarithmic divergence contains an
ill-defined expression in the Laplacian. In Sect. 4 the (even-
tual) contributions of the regular and divergent terms will
be discussed separately.

3.2 Effective dilaton action

So far all steps in this section were valid for general Lapla-
cian � and endomorphism E. In order to establish the effec-
tive action of the dilaton model (2) we have to specify � and
E accordingly, while returning to Lorentzian spacetime. To
achieve this we must reconsider the four-dimensional gen-
erating functional, determined by the matter part of (1)

Z[g4] = N
∫

D (
4
√−g4S

) · eiL4
m[g4,S]

= N
∫

D (
4
√−g4S

) · e−i
∫

M
S�S

√−g4d4x. (25)
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N is a normalization constant and the factor 4
√−g in the

path integral measure establishes diffeomorphism invari-
ance [21] of the path integral. The SR generating func-
tional is obtained by introducing the SR d’Alembertian
�4 = �2 + ∇X

X ∇ (cf. (A.10) in the appendix for d = 4)
and measure

√−g4 = X
√−g2 in the classical action and

by integration over the angular coordinates θ, ϕ:

Z[g2] = N
∫

D
(

4
√−g2

√
XS

)
·e−4πi

∫
L

S(X�2+∇X∇)S
√−g2d2x.

(26)
It is now convenient to define a new field S′ :=

√
XS

such that6 Lm[g2, S
′] = − ∫

L
S′OMS′√−g2d2x defining

the complete d’Alembertian of the dilaton model7

OM =
1√
X

(X�2 + ∇X∇)
1√
X

= �2 + EM, (27)

EM =
(∇X)2

4X2 − �X

2X
. (28)

Inserting these results into (24) and going back to Lorentz-
ian spacetime dτ = idt, WM = iWE , � → −�, RE →
−RM, EE → −EM the effective action of the dilaton
model (2) follows8:

W dil
M [g] =

1
96π

∫
L

{
−12c0 − 3c1

[(∇X

X

)2

− 2
�X

X

]

+

[
R + 3

(∇X

X

)2

− 6
�X

X

]
1
� R

+
3
4

[(∇X

X

)2

− 2
�X

X

]
c2

�

[(∇X

X

)2

− 2
�X

X

]}

×√−gd2x. (29)

A particular, attractive feature of the 2D dilaton model is
that most of its effective action (29) can be brought into a
local form by choosing a conformal gauge gαβ = e2ρηαβ of
the spacetime metric. The scalar curvature then becomes
R = −2�ρ. It is convenient to represent the dilaton field
in the form X = e−2φ so that the endomorphism can
be expressed as E = �φ − (∇φ)2. If one (naively) uses
the relation

�−1� = 1 (30)

one obtains the local part of the effective dilaton action

Wl[g] =
1

24π

∫
L

{
−3c0 + 3c1(∇φ)2 + ρ�ρ

6 In [20] the original field S was preserved, leading to an
additional dilaton factor X from the measure during spherical
reduction. In the 2D action this difference can be described by
a conformal transformation of the metric by this factor, not
affecting the Hawking flux but other components of the EM
tensor.

7 M indicates Minkowski signature.
8 In the following we omit the index dil.

+6ρ(∇φ)2 − 6ρ�φ
} √−gd2x, (31)

which turns out to be identical to the one derived in [13].
However a new contribution

Wnl[g] =
1

24π

∫
L

{
3
[
�φ − (∇φ)2

] c2

�
[
�φ − (∇φ)2

]}
×√−gd2x (32)

appears in our present approach which cannot be brought
into a local form. Nevertheless, we will be able to show
below that the relevant expectation value derived from
(32) is local after all but ill-defined. It is remarkable that
the divergent terms do not contain the scalar curvature.

Obviously, the form (31) is not unique. Namely, by
naively using the relation (30) one implicitly disregards a
homogeneous solution χ of the wave equation �χ = 0. It is
the aim of the next section to present a heuristic argument
that the proper choice is indeed χ = 0, and thus (30) is in
agreement with the boundary conditions which we should
impose onto the scalar field S.

3.3 Homogeneous solution and boundary conditions

The relation of a particular choice of χ to the boundary
conditions of the (massless) scalar field S can be seen when
writing the inverse d’Alembertian as an integral over the
Green function of S and applying Green’s theorem whereby
�G(x, x′) = −δ(x − x′) and �f = F :

− 1
� F =

∫
L

G(x, x′)F (x′)
√

−g′d2x′

= −f(x) −
∮

∂L

[
f∇′

αG − G∇′
αf

] √
−g′εα

β(dx′)β

= −f(x) −
∫ ∞

2M

f(x′)∂t′G
dr′(

1 − 2M
r′

) ∣∣∣∣
t′=∞

+ . . .

∣∣∣∣
t′=−∞

−
∫ ∞

−∞

[
f(x′)∂r′G − G∂r′f(x′)

](
1 − 2M

r′

)
dt′

∣∣∣∣
r′=2M

+ . . .

∣∣∣∣
r′=∞

. (33)

In the step to the third line the explicit form of the Schwarz-
schild metric has been used. According to (33), to guarantee
regularity of the boundary terms, G(x, x′) must vanish at
least linearly for r′ = 2M . This is a natural condition for the
Green functions since the manifold L is in fact a half-plane
that is bounded by the coordinate singularity r = 2M .
Further, one must employ some infrared regularization to
render finite the support of the Green functions. As the flux
is measured at some finite distance r from the BH at some
instant of time t during the quasi-static phase all boundary
terms should vanish after that infrared regularization. This
can be realized by simply dropping all boundary terms9.

9 Alternatively one could introduce a finite mass parameter
or consider a manifold of finite size.
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But then (33) reduces to − 1
� F = −f (provided that f

has at most logarithmic divergences on the horizon) and
relation (30) is fulfilled.

It is instructive to analyze expressions like �−1 more
explicitly.Unfortunately, theGreen functions on aSchwarz-
schild spacetime cannot be obtained in a closed form. Nev-
ertheless, one may construct a heuristic argument by con-
sidering the properties of a formal perturbation series

G(x, x′)

= G0(x, x′) +
∫ ′′

L

G0(x, x′′)δ�′′G0(x′′, x′)d2x′′

+
∫ ′′

L

∫ ′′′

L

G0(x, x′′)δ�′′G0(x′′, x′′′)

×δ�′′′G0(x′′′, x′)d2x′′d2x′′′ + . . . , (34)

where

� =
(

1 − 2M

r

)−1

∂2
t − ∂r

[(
1 − 2M

r

)
∂r

]
(35)

is the two-dimensional Schwarzschild d’Alembertian and

δ� = � − �0 =
2M

r − 2M
∂2

t + ∂r

(
2M

r
∂r

)
(36)

is the difference to �0, the flat one.
In (B.4), respectively (B.6), of Appendix B the results

for the second, respectively the third order of the pertur-
bation series are given.

The Green functions on the flat half-plane which fulfill
the imposed boundary conditions are easy to construct,
singling out the appropriate eigenfunctions. For instance,
the flat retarded Green function reads

Gret
0 = θ(t − t′)G(0)

0 , (37)

G
(0)
0 =

1
2

[θ(r − r′ + t′ − t) − θ(r − r′ + t − t′)

−θ(r + r′ − 4M + t′ − t)

+θ(r + r′ − 4M + t − t′)]. (38)

In the same manner the flat advanced and Feynman-type
“causal” Green functions can be obtained. It should be
noted that thenon-local terms in the effective action, having
the form

∫
L

G(x, x′)F (x′)
√−gd2x′ with time-independent

F = F (r), are independent of the type of Green function as
canbe verified easily.Thus only the retardedGreen function
(37) need to be considered and any further ambiguity of
that type disappears.

Among the non-local expressions that appear in the
effective action (29) the first one has the form �−1R. The
first three orders of the perturbation series with (34) and
the formulas (B.4) and (B.6) of Appendix B yield∫

L
G(x, x′)R(x′)

√
−g′d2x′

= 1 +
1
2

+
1
3

+ . . . − 2M

r
− 2M2

r2 − 8M3

3r3 − . . .

→ ln
(

1 − 2M

r

)
− ln 0 = 2ρ − ln ε̃, (39)

ε̃ → 0, which is suggested by the formal summation in the
first line. Bearing in mind that R =−2�ρ =−� ln

(
1 − 2M

r

)
we may argue that the perturbation series produces a
homogeneous solution which is just an infinite constant
χρ = − 1

2 ln ε̃. Its appearance could have been expected
also as it is “required” to shift the absolute value of the
integral (39) in accordance with the boundary conditions:
if one inserts r = 2M on the LHS the value of the integral
must become zero. The action of the inverse d’Alembertian
on the half-plane on a function F = �f thus becomes

�−1�f(r) = f(r) − f(2M). (40)

But this is consistent with the proper definition of a delta-
function on the half-plane:

δhp(x−x′) := δ(r−r′)δ(t−t′)−δ(r+r′−4M)δ(t−t′). (41)

Using δhp in Green’s theorem (33) immediately yields in-
deed (40). In any case this boundary term does not change
the effective action (31) because all homogeneous constants
can be absorbed anyway by the renormalization constant
c1, which, on the other hand, has no effect on the Hawking
flux (c.f. (53) below).

Finally, the first order of the second type of non-local
term �−1�φ = �−1

( 4M−r
r3

)
in the effective action should

be checked:∫
L

G0(x, x′)
4M − r′

(r′)3
d2x′ ≈ ln

( r

2M

)
−

(
1 − 2M

r

)
+ . . .

(42)
The leading order ln

(
r

2M

)
corresponds to the expected

result as φ = − ln r. To this order nothing can be said
about the additional term − (

1 − 2M
r

)
which should be

absorbed by higher orders of the perturbation series.

4 Hawking flux

4.1 Regular part

Having derived in Sect. 2 the effective action of the dilaton
model after fixing its local form (31) by considering bound-
ary conditions, it is now straightforward to calculate the
expectation values of the basic components by functional
variation for ρ and X (or, more conveniently, φ). First
we only regard the regular part ∝ ∫

L
[ρ�ρ + 6ρ(∇φ2) −

6ρ�φ]
√−gd2x of (31). The trace (9) then becomes

〈T 〉 = − 1√−g

δWreg

δρ
=

M

3πr3 , (43)

and the pressure component (10), remembering that
X = e−2φ,

〈
T θ

θ

〉
=

1
2X

√−g

δWreg

δφ
(44)
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=
−1

8πr5

{
4M + (4M − r)

[
ln

(
1 − 2M

r

)
− ln ε̃

]}
.

The appearance of an infinite constant ln ε̃ can be traced
back to the particular boundary conditions used in this
work to define the inverse d’Alembertian (40). It can be
shifted to the (also infinite) regularization constant c1; see
next section10.

As discussed in the introduction, the basic components
can be considered as being state-independent, whereas the
proper quantum state for a well-defined effective action has
been argued to be the static (unphysical) Boulware state.
Thus we must rely on the conservation equation (8) to
compute the remaining components of the EM tensor in the
Unruh state. A necessary condition for regularity of the EM
tensor at the horizon was QU = 0. The other constant KU is
determinedby the condition that the incomingfluxvanishes

〈U |T++| U〉 =

(
1 − 2M

r

)
4

(〈
T t

t

〉 − 〈T r∗
r∗〉 − 2 〈T r∗

t〉
)

=

(
1 − 2M

r

)
4

(〈T 〉 − 2 〈T r
r〉 − 2 〈T r∗

t〉)

r→∞→ KU

M2 −
∫ ∞
2M

[
M

(r′)2 〈T 〉 +
(
1 − 2M

r′
)
∂rX

〈
T θ

θ

〉]
dr′

2

− QU

2M2 = 0. (45)

Inserting (43) and (44) and fixing the dilaton field to its
standard form X = r2 in spherical coordinates we obtain

KU = M2
∫ ∞

2M

[
M

2(r′)2
〈T 〉2 + (r′ − 2M)

〈
T θ

θ

〉
2

]
dr′

= − 1
768π

. (46)

By the CF equations (5) and (6) the total flux Freg from the
regular part of the effective action through a large spherical
shell surrounding the BH is then given by

Freg = 〈U |T r
t| U〉2 = − KU

M2 =
1

768πM2 , (47)

which precisely coincideswith the result obtained in [13,16].
The related flux in 4D through a sphere of size 4πr2 becomes

〈U |T r
t| U〉4 =

1
3072π2M2r2 . (48)

As a consequence the BH behaves as a black body at
Hawking temperature with the radiation flux according to
Stefan–Boltzmann’s law [13,16]. It is appropriate, though,
to emphasize at this point the drawback of this solution
to the energy flow problem [10]: at the horizon the energy
density and other components of the EM tensor exhibit
a logarithmic singularity in global coordinates! As argued
10 For the moment we keep this notation until we consider
the contribution of the corresponding divergent term in the
effective action.

in [16] this singularity (being integrable) is not in contra-
diction with the finiteness of the total flux. Actually, we
also obtain the outgoing flux in light-cone coordinates T−−
with that singularity ((97) of [16]) in our present approach

〈U |T−−| U〉 =

(
1 − 2M

r

)2

768πM2r2 (49)

×
{

r2 + 4Mr + 12M2 + 48
[
ln

(
1 − 2M

r

)
− ln ε̃

]}
.

4.2 Divergent terms

The first divergent term ∝ c0 = ε−1 in (31) is a pure UV
divergence and has the form of a cosmological constant:

Wc0 =
−1
8π

∫
L

c0
√−gd2x =

−c0

8π

∫
L

e2ρd2x. (50)

It contributes to the trace of the EM tensor 〈T 〉c0
= c0

4π and
hence also to the asymptotic flux (ε has dimension M2)

Kc0
U = M2

∫ ∞

2M

M 〈T 〉c0

2r2 dr =
M2c0

16π
. (51)

This divergent contribution to the EM tensor can be inter-
preted as an infinite vacuum energy because it even appears
in the case of flat spacetime M = R = 0. A renormalized
EM tensor can thus be defined by subtracting the flat space-
time value (with flat metric η) 〈Tαβ〉ren := 〈Tαβ〉gL

−〈Tαβ〉η

or by simply setting c0 = 0.
Further, we had an IR-UV divergence ∝ c1 = ln(ε/T )

in (31), contributing only to the pressure component

〈
T θ

θ

〉
c1

=
c1(r − 4M)

8πr5 . (52)

Although the asymptotic behavior of the EM tensor is
unaffected by c1 because

Kc1
U = M2

∫ ∞

2M

(r − 2M)
〈
T θ

θ

〉
c1

dr = 0 (53)

it produces infinite contributions to the EM tensor in higher
orders in r. Comparing with (44) we observe that c1 appears
in the same place as the homogeneous solution χρ = − 1

2 ln ε̃
needed to fulfill the boundary conditions (cf. Sect. 3.3) by
(40). After all, any constant homogeneous solution χρ leaves
the asymptotic flux invariant and can be shifted to the
regularization constant c1.

The situation clearly is different if the homogeneous
solution is a function. If, for instance, one chooses as in [10]

χ̃ρ =
1
2

[ r

2M
− 1 + ln

( r

2M
− 1

)
− ln ε̃

]
, (54)

in order to eliminate the logarithmic singularity of the flux
at the horizon, this would mean that the corresponding
non-local term in the effective action had the form (cf. (39))∫

L
G(x, x′)R(r′)d2x′ (55)
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=
r

2M
− 1 + ln

[( r

2M
− 1

)(
1 − 2M

r

)]
− 2 ln ε̃,

and the asymptotic Hawking flux not only is affected, but
even would become negative because K̃U > 0:

K̃U = KU + M2
∫ ∞

2M

(r′ − 2M)(r′ − 4M)
4π(r′)5

χ̃ρdr′

= KU +
1

128π
=

5
768π

. (56)

This is the result obtained in [10], (16). Also the other
components of the EM tensor calculated with χ̃ρ in (54)
can be verified to agree with those of that work. As observed
by the authors of [10] themselves, then the weak energy
condition is clearly violated in the asymptotic region. We
do not believe that this serious consequence of the choice
(54) justifies its aim to eliminate the logarithmic singularity
at the horizon [10].

Finally, we have a non-local divergent part (32) of the
effective action ∝ c2 whose contribution to the basic com-
ponents can be localized in a conformal gauge

〈T 〉c2
= − 1√−g

δWnl

δρ

= − 1
8π

√−g

δ
δρ

∫
L

E
ln(−T e−2ρ�0)

� E
√−gd2x

=
1
4π

E
1
� E =

�ρ[ρ − ρ(2M)]
4π

=
M [ln

(
1 − 2M

r

) − ln ε̃]
4πr3 , (57)

〈
T θ

θ

〉
c2

=
1

2X
√−g

δWnl

δφ

=
1

8πr2√−g

∫
L

δE

δφ

c2

� E
√−gd2x (58)

=
[� + 2�φ + 2∇φ∇]

8πr2

c2

� E

=
[� + 2�φ + 2∇φ∇]c2[ρ − ρ(2M)]

8πr2 ,

where we have used the relation (after having varied the
effective action!)

E = �φ − (∇φ)2

=
4M − r

r3 − 2M − r

r3

=
2M

r3 = − R

2
= � ρ. (59)

Equation (58) contains an ill-defined expression ln(T�)
that cannot be treated further. Even if c2 were only a
constant, the pressure component would change by a term

〈
T θ

θ

〉
c2

=
c2

8πr5

{
4M + (4M − r)

[
ln

(
1 − 2M

r

)
− ln ε̃

]}

identical to the original expression (44). In that case the
asymptotic flux would be affected too: Freg → Freg · (1 −
3c2). Because Freg is supposed to be the correct result this
constant had to be zero.

The appearance of IR divergences within the covariant
perturbation theory (in contrast to the local Seeley–DeWitt
expansion used in former derivations [13,16]) is not surpris-
ing as it allows for infinitely large values of the eigentime
τ , corresponding to zero modes. As long as a more detailed
analysis of these terms does not exist we can only high-
light the existence of such terms while assuming that their
(infinite) contribution to the EM tensor might be canceled
by some mechanism that has not been considered yet and
may necessitate the inclusion of (even arbitrary?) higher
orders in covariant perturbation theory.

5 Conclusions and outlook

The Hawking flux from a spherical Black Hole has been re-
considered, whereby we followed the line of solving the EM
conservation law, as proposed by Christensen and Fulling
many years ago [12]. We have linked the formalism of d = 4
to the “non-conservation equation” in the effective d = 2
dilaton theory where, as in 4D gravity, beside two con-
stants, only two “basic components” are a necessary in-
put, the 2D trace anomaly 〈T 〉2 of the EM tensor and the
“dilaton anomaly”

〈
T θ

θ

〉
2 to be interpreted also as (part

of) the pressure component
〈
T θ

θ

〉
4 = 〈Tϕ

ϕ〉4 in d = 4.
Whereas the computation of 〈T 〉2 is known for a long

time to fit perfectly into the heat kernel formalism, in its sin-
gle previous determination of [13,16]

〈
T θ

θ

〉
2 only by a tour

de force argument had been made accessible to that tech-
nique. In our present work we replace both derivations by
a new application of the “covariant perturbation theory”,
introduced by Barvinsky and Vilkovisky [17,18], which al-
lows for the direct determination of the effective action also
in the presence of dilaton fields. Again the heat kernel is
used, albeit in a slightly different manner. The non-local
form of this action implies an important dependence on
boundary conditions for the Green functions of the scalar
field in the given background. We argue that the effec-
tive action only has a consistent interpretation when for
that quantity the (otherwise unphysical) Boulware state
determines the boundary condition at infinity (infrared
regularization). This is supported by a study of the Green
functions where – in a formal perturbation series starting
from flat spacetime – a natural boundary condition at the
horizon directly leads to a constant homogeneous solution.
The latter can be absorbed in a renormalization constant
which does not affect the asymptotic flux. Generically, the
choice of different homogeneous solutions represents the
ambiguity inherent in the non-local effective action.

Fromthe regular part of that effective action in theBoul-
ware state the Hawking flux is not derived directly, but only
the non-radiative basic components 〈T 〉2 and

〈
T θ

θ

〉
2 which

are, indeed, independent of the assumed (Boulware,Hartle–
Hawking, Unruh) quantum state [20]. Inserting them into
the EM (non-) conservation equation the correct Hawk-
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ing flux in the Unruh state (in agreement with the black
body derivation) is obtained, without proceeding through
one mathematically questionable step which in [13,16] pro-
duced the same physically reasonable result.

We also clarify the consequences of the ambiguity
brought about by different other choices of that homo-
geneous solution which are not constants. They may even
yield a negative flux [10]. A choice like the one in that work,
as noted by the authors themselves, violates the weak en-
ergy condition which we consider a more serious defect than
the (logarithmic, hence integrable) divergence of some of
the components of the EM tensor at the horizon [13,16].

Beside the above-mentioned attractive features of the
covariant perturbation theory, it reveals the existence of
three new divergent terms (up to this order in curvature)
which require further investigation. The first one ∝ c0 is
interpreted as an infinite vacuum energy and its contribu-
tion to the flux can be removed by common renormalization
arguments. The second one ∝ c1 seems to be related to
the boundary conditions as it contributes another logarith-
mic (UV) divergence at the horizon, as compared to the
one produced by the homogeneous solution χρ, leaving a
logarithmic IR divergence. Although we could show the
independence (53) of the asymptotic flux of c1 as well as
of any constant χρ, the presence of an infinite constant
in higher order terms in r could not be avoided (at least,
when renormalizing this constant to zero one is left with
the logarithmic divergence at the horizon as in [13, 16]).
Finally, our approach yields a completely new term (32)
for the effective action that cannot be localized even in
conformal gauge and contains an IR divergence c2 which is
coupled to an expression ln�. Although it could be shown
that its contribution to the EM tensor can be given in a
local form, the latter could not be evaluated further due to
its ill-definedness. To sum up, the covariant perturbation
theory (by its non-local character) produced new IR di-
vergent terms that were absent in the local Seeley–DeWitt
expansion used in former derivations [13, 16]. A proper
renormalization of these terms would require a detailed
analysis of this method (e.g. considering higher orders in
curvature or partial summations) which might be the issue
of future work.

Beyond the application to the present problem the ex-
tension of covariant perturbation theory may set an exam-
ple for the use of that technique in theories where matter
is also coupled non-minimally to a scalar field (such as
scalar-tensor theories). Also applications to a non-pertur-
bative approach, where the geometry is integrated out,
seem promising [22,23].

The improved understanding of the situation for a static
spherically symmetric black hole also seems a good basis
for extending our result to include e.g. “grey factors” ([50]
in [8]) by admitting a non-vanishing classical scalar back-
ground field, back reaction upon the metric, and also the
consideration of higher orders in the covariant perturba-
tion series.
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Appendix A: Spherical reduction

The spherical reduction procedure is the basis of the two-
dimensional dilaton model considered in this work. We
reproduce it shortly, because some intermediate formulas
are important for the main text. Here we consider a more
general reduction from a d-dimensional spacetime M with
spherically symmetric metric

ds2 = gαβdxαdxβ − Φ2(xα)gκλdxκdxλ (A.1)

to a two-dimensional Lorentz submanifold L, spanned by
the coordinates xα (e.g. t, r), by reducing out a (d − 2)-
sphere Sd−2 with coordinates xκ = θ, ϕ . . . The dilaton field
is defined as X = Φ2, Φ is more convenient for calculations.
gαβ is the induced metric on the L and gκλ the one on Sd−2.
We work in a vielbein basis in which the line-element can
be written as

ds2 = ηabe
a ⊗ eb − δije

i ⊗ ej . (A.2)

The er form a vielbein basis on M . One can define a viel-
bein basis on L and Sd−2 which we denote by ẽa and ẽi,
respectively11. They are related to the er by

ea = ẽa , ei = Φẽi (A.3)

Ea = Ẽa , Ei = Φ−1Ẽi. (A.4)

Further, a (Levi-Civitá) spin-connection ωr
s on M induces

connections on the submanifolds:

ω̃a
b = ωa

b , ω̃i
j = ωi

j . (A.5)

The connection on M , determined by vanishing torsion on
M and L, is given by

ωr
s =

(
ω̃a

b (ẼaΦ)ẽi

(ẼaΦ)ẽi ω̃i
j

)
. (A.6)

With (A.6) the Riemann tensor on M can be expressed by
geometrical objects on L and Sd−2. For the scalar curvature
one has

RM = RL − 1
Φ2

[
RS + (d − 2)(d − 3)

(
ẼbΦ

)(
ẼbΦ

)]

− 2
Φ

(d − 2)
[(

ẼbẼ
bΦ

)
+

(
ẼbΦ

)
ω̃a

b

(
Ẽa

)]

= RL − (d − 2) (d − 3)
Φ2

[
1 + ∇̃bΦ∇̃bΦ

]

−2
(

d − 2
Φ

)
�̃LΦ. (A.7)

11 We mark geometric objects belonging to L or Sd−2 by a
tilde; tensorial objects on the submanifolds are distinguished
easily by the different indices used.
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In the last line we have inserted the (constant) scalar cur-
vature of the (d− 2)-sphere RS = (d − 2) (d − 3) (the Rie-
mann tensor on the (d−2)-sphere is given by R̃i

j = ẽi∧ẽj).
In this form all quantities on the RHS live on L as it should
be. By reduction from d = 4 the Ricci tensor and the scalar
curvature become

RM
ab = Ra(Eb) = RL

ab − 2
∇̃a∇̃bΦ

Φ

= RL
ab +

∇̃aX∇̃bX

2X2 − ∇̃a∇̃bX

X
(A.8)

RM = RL − 2
1 + (∇̃Φ)2

Φ2 − 4
�̃Φ

Φ

= RL − 2
X

+
(∇̃X)2

2X2 − 2
�̃X

X
. (A.9)

In the last equality we have returned to the dilaton field
X = Φ2. Note that the �̃X

X -term in the scalar curvature
becomes a surface term in the action when it is multiplied
by the SR measure

√−gM = X
√−gL. For a d’Alembertian

on the d-dimensional manifold M acting on a scalar field
S(xα) which depends only on the coordinates of L one gets

�S = ηrs∇rEsS = ηab∇aEbS + ηij∇iEjS

= �̃S − ηijωa
j(Ei)EaS = �̃S − ηij ẼaΦ

Φ
ẼaS

= �̃S + (d − 2)
∇̃aΦ∇̃aS

Φ

= �̃S +
d − 2

2
∇̃aX∇̃aS

X
. (A.10)

If M is the four-dimensional Schwarzschild spacetime and
the gauge of the dilaton is fixed as X = r2 this simplifies to

�S = �̃S − 2
r

(
1 − 2M

r

)
∂rS. (A.11)

Appendix B:
Green function perturbation – higher orders

In this appendix the second and third order of the Green
function perturbation series (34) are adapted to the case of
a 2D Schwarzschild spacetime with perturbing d’Alembert-
ian (36), taking into consideration the particular boundary
conditions on the half-plane and the time-independence of
the involved integrals. The second order of the perturbation
series then reads (∂′′ = ∂r′′)

−
∫ ′′

[∂′′G0(x, x′′)]g(r′′)∂′′G0(x′′, x′)d2x′′, (B.1)

where one r′′-derivative has been partially integrated and

g(r) :=
2M

r
. (B.2)

On a two-dimensional Schwarzschild spacetime ∂2
rg(r) =

−R(r). A useful identity can be derived, introducing flat
light-cone derivatives ∂± = ∂t ± ∂r , �0 = ∂+∂− = ∂−∂+.
Because of the time-independence one can effectively set
�0 = −∂2

r and ∂+ = −∂− = ∂r, (g′′ = g(r′′), G0(x, x′) =
Gxx′ , �0Gxx′ = −δ2(x − x′)):

0 =
∫ ′′

�′′
0(Gxx′′Gx′′x′g′′)

= −(g + g′)Gxx′ (B.3)

−
∫ ′′

{(Gxx′′Gx′′x′)R′′ + 2g′′(∂′′Gxx′′)∂′′Gx′′x′}

By (B.3) the second order of the perturbation series (34)
can be written in the compact form

1
2

{
[g(r) + g(r′)]G0(x, x′)

+
∫ ′′

G0(x, x′′)G0(x′′, x′)R(r′′)d2x′′
}

. (B.4)

In a similar manner the third order is computed,∫ ′′∫ ′′′
Gxx′′∂′′(g′′∂′′Gx′′x′′′)∂′′′(g′′′∂′′′Gx′′′x′)

=
∫ ′′

(∂′′Gxx′′)g′′∂′′
∫ ′′′

(∂′′′Gx′′x′′′)g′′′∂′′′Gx′′′x′

=
1
4

{
[g2 + (g′)2]Gxx′

+
∫ ′′

Gxx′′ [∂′′(g′′)2]∂′′Gx′′x′ + [g′g + (g′)2]Gxx′

+g′
∫ ′′

Gxx′′Gx′′x′R′′ (B.5)

+
∫ ′′′

Gx′′′x′R′′′
(
[g + g′′′]Gxx′′′ +

∫ ′′
Gxx′′Gx′′x′′′R′′

)}
,

where again the identity (B.3) has been used. Finally, we
write down the third order of the perturbation series in a
compact form, replacing ∂rg

2(r) = 2R(r):

1
4

{
[g2(r) + g(r)g(r′) + 2g2(r′)]G0(x, x′)

+
∫ ′′

G0(x, x′′)R(r′′)[2 · ∂r′′ + g(r′)]G0(x′′, x′)d2x′′

+
∫ ′′′

G0(x′′′, x′)R(r′′′)
(

[g(r) + g(r′′′)]G0(x, x′′′)

+
∫ ′′

G0(x, x′′)G0(x′′, x′′′)R(r′′)d2x′′
)

d2x′′′
}

. (B.6)

Appendix C:
Non-conservation equation

Diffeomorphism invariance of the generating functional im-
plies a non-conservation equation for the renormalized ex-
pectation value of the EM tensor when a dilaton field is
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present, resulting from the non-minimal coupling of the
scalar field in d = 2 (cf. (2)). A 2D diffeomorphism transfor-
mation δξg

αβ = −(∇αξβ + ∇βξα), δξX = ξα∂αX, δξS =
ξα∂αS applied to the effective action W [g] = −i lnZ[g]
yields the quantum non-conservation equation which has
not been checked in the previous literature:

0 = δξW [g] =
−iδξZ[g]

Z[g]

=
−iN
Z[g]

δξ

×
∫

D( 4
√−gS) ei

∫
L

X
2 [(∇S)2−m2S2]√−gd2x

=
−iN
Z[g]

∫
D( 4

√−gS)

×
∫ y

L

[
δξg

αβ δ
δgαβ

+ δξX
δ

δX
+ δξS

δ
δS

]
eLm

dil d2y

=
−iN
Z[g]

∫
D( 4

√−gS) eLm
dil

×
∫ y

L

{
−(∇αξβ + ∇βξα)i

√−g

2
Tαβ

+ξα∂αX
i
√−g

2
[
(∇S)2 − m2S2]} d2y

+
iN
Z[g]

∫
D( 4

√−gS) eLm
dil

∫ y

L

δ
δS

δξS d2y

=
N

Z[g]

∫
D( 4

√−gS) eLm
dil

×
∫ y

L

ξα

{
∇βTαβ +

∂αX

2
[
(∇S)2 − m2S2]

+
i√−g

lim
x→y

∂αδ(x − y)
}√−gd2y

=
∫ y

L

ξα

{
∇β 〈Tαβ〉 +

∂αX

2
[〈

(∇S)2 − m2S2〉]

+
i√−g

lim
x→y

∂αδ(x − y)
}√−gd2y. (C.1)

In the steps from the second to the twelfth line a partial
integration in the path integral has been performed. The
divergence δ(0) represents the infinite zero-point energy of
the quantized scalar field S. Defining the renormalized EM
tensor 〈Tαβ〉ren := 〈Tαβ〉+ igαβ√−g

limx→y δ(x− y) we obtain
indeed (8), as proposed.

Appendix D: Heat kernel integrals

The leading divergent (T → ∞, ε → 0) terms of the expan-
sions (19)–(23), appearing in the trace of the heat kernel
(17) can be computed analytically. For instance (20) only
has an UV divergence, hence we cut off the τ -integration

at the lower boundary by ε > 0. As a first step we ex-
pand the regularized integrand in powers of s, carry out
the differentiation for s and then set it zero:

d
ds

{
1

Γ (s)

∫ ∞

ε

τ s−1dτ

} ∣∣∣∣
s=0

=
d
ds

{
[s + s2γE + O(s3)]

×
∫ ∞

ε

[τ−2 + sτ−2 ln τ + O(s2)]dτ

} ∣∣∣∣
s=0

=
∫ ∞

ε

τ−2dτ =
1
ε
. (D.1)

Equation (19) in addition contains an IR divergence, re-
quiring a cutoff for the τ -integration at the upper boundary
by T < ∞:

d
ds

{
1

Γ (s)

∫ T

ε

τ sdτ

} ∣∣∣∣
s=0

=
d
ds

{
[s + s2γE + O(s3)]

1
s

(T s − εs)
} ∣∣∣∣

s=0

= lnT − ln ε. (D.2)

The most problematic term is (21). Introduction of a cutoff
at infinity and differentiation for s leads to (using (18)):

d
ds

{
1

Γ (s)

∫ T

0
τ sf(−τ�)dτ

} ∣∣∣∣
s=0

=
∫ 1

0

∫ T

0
e−τa(1−a)(−�)dτda

=
∫ 1

0

e−Ta(1−a)(−�) − 1
a(1 − a)(−�)

da

=
4

−�
∫ 1

0

e(z2−1) T (−�)
4 − 1

z2 − 1
dz. (D.3)

This integral cannot be solved analytically, however, it can
be compared to

I =
∫ 1

0

∫ T

0
e(z−1) τ(−�)

4 dτdz =
4

−�
∫ 1

0

e(z−1) T (−�)
4 − 1

z − 1
dz

=
4

−�
{

ln
[

T (−�)
4

]
+ γE

}
. (D.4)

This is twice the result conjectured already at the RHS
of (21) apart from an additive constant 4 ln 4

� . Hence, it
remains to show that the difference between I/2 and of
the original expression (LHS of (21)) converges to (one
half of) that constant for large regularization parameter T .
First we perform a substitution of the integration variable
z → z2 in (D.4):

I

2
=

∫ T

0

∫ 1

0
z · e(z2−1) τ(−�)

4 dzdτ. (D.5)
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This difference then becomes∫ 1

0

∫ T

0
e(z2−1) τ(−�)

4 (z − 1)dτdz

=
4

−�
∫ 1

0

e(z2−1) T (−�)
4 − 1

z + 1
dz

T→∞→ 4
�

∫ 1

0

1
z + 1

dz =
4 ln 2
� =

2 ln 4
� (D.6)

which proves (21) to be the correct result for large T . We
note that the limit
limT→∞ e(z2−1) T (−�)

4 = 0could be performedbecause z2 <
1 for all z except for z = 1. But at that value the integrand
vanishes altogether.

The term (22) is still (logarithmically) IR divergent
and not UV divergent because f(−�τ) − 1 → 0 for τ →
0. However, we introduce both cutoffs and consider the
integral over f(−�τ) separately which we split into two
parts by a partial integration, defining b := (−�)a(1− a):

∫ T

ε

τ s−1e−bτdτ =
τ s

s
e−bτ

∣∣∣∣
T

ε

+
b

s

∫ T

ε

τ se−bτdτ. (D.7)

The second term in (D.7) yields a regular contribution to
(22) that can be evaluated as 2−ln(−�)

(−�) by use of

∫ ∞

0
ln τ e−bτdτ = − γE + ln b

b
.

The first term in (D.7) contains a UV divergence ln ε due
to the formal separation:

1
(−�)

d
ds

Γ−1
∫ 1

0

τ s

s
e−bτda

∣∣∣∣
T

ε

∣∣∣∣
s=0

s=0→ γE + lnT

(−�)

∫ 1

0
e−bτda

∣∣∣∣
T

ε

=
−γE − ln ε

(−�)
. (D.8)

Here we have used the relation

lim
T→∞

lnT

∫ 1

0
e−bτda = lim

T→∞
lnT e− (−�)T

4

∫ 1

0
e

(−�)T
4 z2

dz

< lim
T→∞

lnT e− (−�)T
4

∫ 1

0
e

(−�)T
4 zdz = 0. (D.9)

The contribution from −1 in f(−�τ) − 1 finally yields
the IR divergence and cancels the UV divergent term
from above:

d
ds

Γ−1
∫ T

ε

τ s−1 −1
(−�)

dτ

∣∣∣∣
s=0

= − ln T − ln ε

(−�)
. (D.10)

The sum of the regular part 2−ln(−�)
(−�) together with (D.8)

and (D.10) gives (22).
The computation of the remaining expression (23) fol-

lows the same strategy as the one of (22), however involv-
ing two partial τ -integrations. The treatment of the lower
boundary ε, leading to a UV divergence, requires some
special care.
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